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Computer-Aided Drug Design: Using Numbers to Your Advantage
John C. Faver,T Melek N. Ucisik,Jr Wei Yang,i’§ and Kenneth M. Merz, ]r.*’Jr

TDepartment of Chemistry and the Quantum Theory Project, University of Florida, 2328 New Physics Building, P.O. Box 118435,

Gainesville, Florida 32611-8435, United States

*Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
Snstitute of Mol Biophysics, Florida State University, Tallahassee, Florida 32306, United States

ABSTRACT: Computer-aided drug design could benefit from a greater understanding of how errors arise and propagate in
biomolecular modeling. With such knowledge, model predictions could be associated with quantitative estimates of their
uncertainty. In addition, novel algorithms could be designed to proactively reduce prediction errors. We investigated how errors
propagate in statistical mechanical ensembles and found that free energy evaluations based on single molecular configurations
yield maximum uncertainties in free energy. Furthermore, increasing the size of the ensemble by sampling and averaging over
additional independent configurations reduces uncertainties in free energy dramatically. This finding suggests a general strategy
that could be utilized as a posthoc correction for improved precision in virtual screening and free energy estimation.

he expectation for computational modeling in chemistry

and biology has been for it to become a fast, cheap, and
reliable workhorse for making predictions concerning bio-
molecular systems. As many in the drug design field well know,
this expectation has not yet been fulfilled. Accurately predicting
properties of drug-like molecules is difficult, and predicting
their binding affinities to protein targets is even more
challenging. Although in principle we know the equations we
need to solve from statistical mechanics, practically treating
biomolecular systems requires many approximations and
simplifications for the problem to be amenable to computation.
These practical limitations have inspired the generation of
numerous computational models, which, by their very
construction and approximations used, all yield some amount
of prediction error. Understanding and estimating these
prediction errors is a significant challenge.

In molecular modeling, errors are usually attributed to two
sources: sampling and computed energetics. Sampling errors
come from an incomplete representation of a statistical
ensemble, perhaps by neglecting some important but rarely
populated states. Sampling errors will almost certainly arise
when modeling very high-dimensional systems. As Levinthal
famously noted, neither computers nor nature could practically
perform an exhaustive sampling of the ~10°® configurations
available to a typical protein." Of course, the majority of these
states are insignificantly populated, and thus importance
sampling via molecular dynamics (MD) or Monte Carlo
(MC) simulations are preferable. Indeed, in recent years the
ability to sample via MD has exploded due to the use of GPUs
and special purpose hardware, which has opened up new
frontiers in understanding the role of sampling in modeling
chemical and biological processes.”” Energetic errors originate
from the approximate modeling of the potential energy of a
given configuration of a system. In computer-aided drug design,
we are typically limited to the use of force field models, which
treat molecules as point charges bound by spring-like potentials
and Lennard-Jones interactions. The benefit of using force
fields is obvious: speed of computation. Their weaknesses can
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be severe: sensitivity to parameters, neglect of electronic
degrees of freedom (polarization), and inability to model bond
breaking are some of them. Nonetheless, given enough
sampling, force fields can be used to model processes including
protein folding and protein—ligand association.*™®

Since approximate energy models can sometimes work well
and other times fail, we began to develop methods that estimate
potential energy modeling errors on the fly.”® Of particular
interest, we studied how potential energy modeling errors
propagate in statistical ensembles and found an interesting
phenomenon: sampling can actually diminish the effects of
energetic errors. That is, imprecise potential energy functions
can still be used to make accurate predictions in computational
chemistry if the statistical ensemble is adequately sampled. Our
model experiment is set up as the following: imagine you
sample a potential energy surface by estimating the energy at
random points with an approximate energy function, which has
a known precision of 1.0 kcal/mol. You continue sampling
randomly until your free energy estimate converges. How does
the 1.0 kcal/mol precision affect this free energy evaluation?

We can model this situation through Monte Carlo error
propagation, in which a distribution of free energy estimates is
constructed by repeatedly evaluating the free energy after
perturbing the microstate energies according to probability
density functions describing their inherent imprecision. In eq 1,
the expression for free energy in the discrete canonical
ensemble, we add a perturbation to each microstate energy,
which is randomly drawn from a normal distribution centered
at zero with a standard deviation of 1.0 kcal/mol (here we use
the notation N(u,6) to mean a random variable from a normal
distribution with mean y and standard deviation &). Thus, we
assume in this example that each microstate has no systematic
error, and 1.0 kcal/mol random error representing energy
model imprecision. After evaluating the free energy many times
with different random microstate energy perturbations, the
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Figure 1. (a) Lennard-Jones potential energy surface used in our computational experiment. (b) Standard deviation of free energy estimations (kcal/
mol units) at each ensemble size. Each microstate included in each ensemble is modeled with a potential energy function with a precision of 1.0 kcal/

mol.

standard deviation of the distribution of free energies yields an
estimate of uncertainty in free energy.
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We performed this experiment on the Lennard-Jones surface
of Figure la. The C++ code for this simulation is available on
the Internet at http://www.merzgroup.org. What we found was
that, as we add more randomly selected microstates to our
statistical ensemble, each with an energy modeled with a
precision of 1.0 kcal/mol, the uncertainty in free energy
decreases (Figure 1b). With one included microstate, we find
the trivial result that the uncertainty in free energy is 1.0 kcal/
mol. As 1 to 50 random microstates are added, the free energy
uncertainty decreases dramatically. This suggests that any
computational model that uses a single configuration to
estimate free energies will contain the maximum amount of
error from the approximate energy function, but one that
samples additional independent configurations will benefit from
this sampling—uncertainty buffering effect, which minimizes
uncertainty from energy function errors. In addition to
converging toward the free energy value, increased sampling
provides a secondary effect of buffering energy modeling errors.
This finding led us to propose a free energy estimation protocol
in which independent samples taken from MD or MC
simulations are clustered by structure and then averaged over
to produce minimum-uncertainty free energy differences
between clusters.

We applied this analysis to a real biological system, the T4-
lysozyme L99A mutant, which is an excellent model system for
studying protein—ligand interactions.” After an exhaustive grid-
based conformational sampling of each ligand inside a rigid,
optimized binding site, we estimated the uncertainties
associated with each protein—ligand complex microstate energy
based on our previous analyses of potential energy model
errors.”® We then evaluated the free energies of binding using a
variable number of microstates in the protein—ligand complex
ensemble (Figure 2). As with the Lennard-Jones system, we
found that using single microstates led to the maximum free
energy errors, but averaging over a few microstates led to
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Figure 2. Uncertainties (standard deviation) in calculated free energies
of binding for different binders to T4-lysozyme L99A at different
ensemble sizes. The ff99SB force field and generalized Born solvent
model were used as the energy model, and units are in kcal/mol. As
sampling increases, the expected error in free energy is diminished.

dramatically decreased uncertainties in free energy. The details
of this work will be provided in an upcoming publication.'®

Our finding was rooted in error analysis applied to statistical
mechanics, but variants of our observation are found elsewhere,
both inside and outside of chemical modeling. Charifson and
later Wang demonstrated how using a consensus of multiple
scoring functions outperforms single scoring functions in
binding affinity estimation."”'* In the statistical modeling and
machine learning communities, the use of ensemble methods
like bootstrap aggregation (bagging) and boosting have become
standard practice since they consistently decrease uncertainties
in predictions."> Genheden and Ryde recommend using
multiple independent MD simulations to enhance the precision
of MM/PBSA results."*

We believe that computer-aided drug design would benefit
greatly from a better understanding of how modeling errors
arise and propagate. Such knowledge might inspire new
algorithms that intrinsically minimize uncertainties, such as
the one mentioned here. In addition, the ability to routinely
estimate our modeling uncertainties would open the door to
using standard statistical tests and, importantly, let us generate
quantitative estimates of confidence in our predictions. Our
published methods for quantitative error estimation depend on
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knowledge of potential energy model performance, but the
sampling-uncertainty buffering effect suggests a general
procedure that could be implemented as a posthoc correction
to current end-point methods for improved precision. Two
other procedures, bootstrapping and consensus scoring, should
also be more commonly utilized in our prediction models to
both increase precision and estimate uncertainties. The benefits
of all three procedures originate from the use of ensembles (in
configuration, measurement, or model space) larger than N = 1.
Perhaps this could be a new mantra for computer-aided drug
design: “use numbers to your advantage.”
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